Привет, username. Свой первый пост я хочу посвятить актуальной проблеме, связанной с появлением большого количества новых форматов дисплеев и непрекращающейся гонкой за плотностью пикселей. В свете появления таких устройств, как очки дополненной реальности, смартчасов, 4к-мониторов и еще более широкого спектра планшетов и ноутбуков, возникает вопрос: какой размер графического элемента/текста следует считать оптимальным и в чем его измерять. Android-разработчики, несомненно, тут же воскликнут: «Да, конечно, в dp!». Но практика показывает, что дела обстоят несколько сложнее.

Проблема

Одна из ключевых задач дизайнера интерфейса заключается в том, чтобы создать оптимальный баланс элементов, который позволяет реализовать бизнес-цели продукта комфортно для пользователя. Методов дифференциации элементов помимо положения не так уж и много:

  1. Размер
  2. Цвет и тон
  3. Границы (особый метод, связанный со свойством зрительного центра оформлять отдельные объекты по касанию светотеневой плоскости и фона)
  4. Фактурная и графическая насыщенность

Очевидно, что, разрабатывая единый интерфейс для разных устройств, дизайнер предполагает не только схожее соотношение деталей этого интерфейса, но и наибольшую читабельность текста и графических элементов. При этом еще Дэвид Огилви замечает, что рекламный плакат не может быть читабельным на любом расстоянии, но должен быть таковым (и иметь соответствующий баланс элементов) на расстоянии наиболее вероятного сценария просмотра. В случае с интерфейсами интерактивных устройств сценарии просмотра являются самыми разными, а вот функциональные сценарии обычно сохраняются. Для человека, знакомого с версткой на разных платформах, явственно встает проблема: как обозначить размер элементов, чтобы они занимали необходимое место в угловом пространстве, видимом глазом, вне зависимости от сценария?

Синопсис

Подобие стандарта на ppi (pixels per inch) появилось в середине 1980-х, когда Apple выпустила свои первые компьютеры серии Macintosh. У этих компьютеров была 9-дюймовая диагональ экрана с 72 пикселями на каждый квадратный дюйм. Уже тогда Apple заняла позицию создания собственной экосистемы, поэтому в диапазоне технологических возможностей того времени было выбрано ppi ровно в два раза меньше dpi (dots per inch) эппловского принтера ImageWriter, что давало гарантию, что размер элементов на экране будет точно соответствовать размеру на бумаге. Однако это касалось только компьютеров фирмы Apple, так как другие производители использовали самые разные ppi, следуя своим возможностям и законам рынка. Этот рудимент видения компьютера как приставки к принтеру привел к появлению в Photoshop галочки Resample Image, при снятии которой разрешение изображения не влияет на его размер, но влияет на качество печати. Тем временем разрешение и диагональ мониторов начали расти как на дрожжах. Если Mac 128k имел разрешение 512×342 пикселя, то к 1996 году эта же компания выпустила Apple Multiple Scan 15 Display с диагональю 13.3 дюйма и потрясающим для тех времен разрешением 1024х768px. Это значение, вне зависимости от диагонали, оставалось самым популярным разрешением экранов еще 12 лет. Несмотря на попытки выработать какой-то стандарт, к середине 2000-х в потребительском секторе было несколько сотен вариаций разрешения и диагонали экранов. Что касается профессионального рынка, где, казалось бы, должна была соблюдаться какая-то стандартизация, то там ситуация была еще хуже. Производители создавали для специалистов мониторы весьма экзотических параметров, которые стоили как паровоз и имели свойство устаревать в течение года. В 2008 году я купил ноутбук Lenovo Y710-200, имевший диагональ 17 дюймов и разрешение 1920х1200px. К сожалению, на тот момент ни у меня, ни, видимо, у Lenovo не было представления о том, какое это было сильное преимущество для ноутбука: 132ppi! Даже у профессиональных мониторов ppi было ниже, а выше можно было наблюдать уже в совсем специфической технике, вроде медицинских мониторов или мониторов космических устройств, хотя именно в этом году Kopin Corporation представила продукт пика технологических исследований — устройство с 2272ppi. Для меня лично дело кончилось тем, что я приучился смотреть видео только HD качества (1920х1080), поскольку на этом экране видео 720p или 480p было очень маленьким. Эта же ситуация подтолкнула меня, как начинающего дизайнера, к самостоятельному осознанию независимости размера элемента от устройства. Кстати, удивительно, но Windows Vista справлялась с масштабированием вполне неплохо. В 2010 году Стив Джобс представил дисплей повышенной четкости, названный Retina (“сетчатка”, англ.). При этом в своей презентации он заявил, что ppi ретины превышает таковой у человеческого глаза и, следовательно, считается идеальным. Как опытный презентатор, Джобс произвел впечателение на общественность, однако по мнению специалистов cultofmac.com слукавил приблизительно в 2-3 раза, так как ряд исследователей считает, что разрешающая способность хорошего зрения несколько выше. Эта картинка (открывать на устройстве с Retina) позволит понять, насколько утверждение Джобса соответствует истине. Человек с нормальным зрением без труда найдет на этом изображении как белые и черные полосы шириной в один пиксель, так и цикл (черная и белая полоса рядом) шириной в 2 пикселя по центру. Следует также понимать, что, ввиду ограниченного углового разрешения глаза, ppi для экранов разного размера и находящихся от пользователя на разном расстоянии будет отличаться. Например, для iPhone это значение должно быть около 952ppi, а для iPad — 769ppi.

Ситуация

На нынешний день мы имеем целый ряд проблем, связанных с историей пикселя. Совершенно очевидно, что размеры, задаваемые в пикселях, потеряли всякий смысл — только на википедии количество различных значений ppi для мониторов превышает две сотни, а это значит, что размер элемента всегда будет разный. Компания Google описывает в своем девелоперском центре несколько единиц измерений, что по идее должно являться решением:

  • px — Pixels (пиксели), соответствующие реальным физическим пикселям экрана
  • in и mm — Inches и millimiters (дюймы и миллиметры), физические единицы измерения
  • pt — Points (пойнты), 1/72 физического дюйма экрана
  • dp — Density-independent Pixels (пиксели, независимые от плотности), абстрактная единица, основанная на плотности физических пикселей и соответствующая 160 dpi экрану (на котором 1dp приблизительно равен 1px)
  • sp — Scale-independent Pixels (пиксели, независимые от масштаба), аналог em в web-верстке

Наиболее близкой к титулу «универсальной» была бы единица sp/em, если бы мы каким-то образом знали базовое оптимальное значение размера кегля. Собственно интуитивное представление дизайнера об оптимуме породило следующий хак в веб-верстке:

  • Тэгу html присваивается font-size: Nxx, N = значение, а xx = пиксели/миллиметры/дюймы (для планшетов я обычно использую 3mm).
  • Во всех дальнейших размерах элементов используется так называемый rem (root em), всегда равный значению, указанному в font-size тэга html (но не его детей).
  • В тэге body указывается font-size непосредственно текста.
html {     font-size: 22px; }  body {     font-size: 14px;     line-height: 1rem; } 

Это элегантное решение позволяет автоматически выстраивать элементы по модульной сетке с размером ячейки, очевидно, равной значению rem. Тем не менее, несмотря на преимущества для верстки, оно имеет все те же ограничения: непонятно, как задать элементу абсолютный относительно зрительного восприятия размер. Для того, чтобы разобраться в этой проблеме, нам придется несколько углубиться в физиологию.

Бионика

Зрительный аппарат появился в результате эволюции простейших фоторецепторов, возбуждающихся от яркого света. При этом природа создала аж четыре варианта: глаза моллюсков, формирующиеся из эпителия, обладающие способностью видеть широкий спектр световых волн, глаза млекопитающих, формирующиеся из нервной ткани и изначально предназначенные для нахождения форм и движения объектов, камерные глаза кубомедуз и фасеточные глаза насекомых. Как признак, зрение оказалось весьма полезным инструментом выживания, и поэтому его эволюция у человека (вместе с самим человеком) длилась всего около полумиллиона лет. Не вдаваясь в подробности, можно сказать, что глаз представляет из себя биологическую линзу, дно которой выстлано слоем рецепторной матрицы из палочек и колбочек — особых клеток, реагирующих на свет и создающих нервные импульсы, идущие дальше в мозг. Однако следует помнить, что, в сетчатке есть например слой амакриновых клеток которые непосредственно учавствуют в первичной переработке информации, отвечая за латеральное торможение: уменьшение количества импульсов в местах яркого диффузного освещения и увеличение в местах резкого перепада освещенности. Система, таким образом, служит для выделения краев тени, падающей на сетчатку или перемещающейся по ней — именно поэтому черный текст на белом фоне читается лучше. Это одна из причин, по которой нейрофизиологи рассматривают сетчатку и зрительный тракт как участников процесса обработки визуальной информации и, следовательно, как часть мозга. В среднем по вертикали поле зрения человека составляет около 135 градусов, а по горизонтали — 155. При этом бинокулярные и хроматические возможности глаза неоднородны по его площади. Источник Для того, чтобы определить остроту зрения (аналог разрешения камеры), используются таблицы Снеллена — ряды букв разного кегля, где размер и ширина знака подбраны так, чтобы стянуть угол в 1 минуту дуги на определенном расстоянии. При этом нормой считается зрение, при котором человек различает буквы в шестой строке с расстояния 6 метров, что равняется 5 минутам дуги. В научных исследованиях принято применять кольца Ландольта, так как это позволяет более объективно оценивать данные, без погрешности на узнаваемость типографических знаков и шрифт. В России кольца Ландольта адаптированы С. Головиным, а таблица Снеллена учеником Головина Д. Сивцевым. Психооптик Гарольд Блэквел выразил понятие о разрешении глаза как углового параметра функции светлости и контраста. Его исследования показали, что этот угол равен приблизительно 0.7 минут дуги для определения пятна неточечного объекта (чтобы сказать, что пятно не является точкой, наблюдателю необходимо минимум 2 пикселя), что результирует минимальную разрешающую способность в 0.35 минут дуги.Современные исследования ясности зрения оперируют понятием цикл на градус (под циклом понимается черно-белая пара линий) и предлагают значение 77 циклов на градус, что приблизительно равно 78 циклам на градус дуги. Опять же, ввиду минимальной ширины цикла в 2 пикселя, мы видим схожие 0.39 минут дуги. Учитывая угловое пространство глаза, путем простого вычисления 100 * 100 * 60 * 60 / (0.3 * 0.3) = 400 мегапикселей мы получаем значение, весьма близкое к общему количеству фоторецепторов в сетчатке. Следует понимать, что в то время, как область ясного видения дает довольно четкое представление о минимально допустимом размере объектов и их разрешении, механика восприятия в периферической области несколько отличается, так как оно в большей степени отвечает за бессознательное сканирование и приоритезацию. Особенность человеческого глаза иметь максимальное разрешение и когнитивный фокус в области фовеа (так называемое желтое пятно), например, позволяет таким сервисам как Spritz увеличить скорость восприятия текста (помимо сокращения «лага» за счет отсутствия движений глаз), умещая слово в область ясного видения. Помимо этого, приведенная схема дает нам четкое представление о рекомендуемых размерах элементов. Ясно, что для комфортного ориентирования по интерфейсу интерактивный элемент, на котором в текущем сценарии сфокусировано внимание, не должен превышать область макулы (7°х5.5°), а блок/группа/список, в котором он находится, — область ясного видения (16-20°x12-15°). Именно этот факт косвенно поддерживает предлагаемую в Google гипотезу, что маленький экран не значит меньше информации, так как область когнитивного анализа в принципе довольно мала. Более детальное представление области ясного зрения. Показано, что отношение между зонами разной рецепторной активности в действительности соответствует золотому сечению.

Оптимум

Дальнейшие исследования выявили наиболее объективные рекоммендации:

  • Ключевые элементы должны занимать не меньше 20 минут дуги
  • Рекомендуемый размер 20-22 минуты дуги
  • Следует избегать символьных элементов размером меньше 16 минут дуги,
  • Разрешение хорошего человеческого зрения = 0.4 минут дуги
  • Среднее разрешение (с учетом всех возрастов) = ~1 минута дуги

Формула для расчета размера элемента в зависимости от расстояния:

h = 2 *d * Tan(x/2) 

где h = искомая высота элемента d = расстояние в миллиметрах x = размер элемента выраженный в радианах (минуты дуги в радианы) Примеры округленных расчетов рекомендуемого размера шрифта (21 минута дуги) в миллиметрах

Расстояние Кегль
400 2.4
500 3.1
600 3.7
700 4.3

Следует отдельно заметить, что устройства вроде Oculus Rift, находящиеся в непосредственной близости от глаза, следуя этой формуле, в идеале должны обладать огромным ppi со значением больше 2000.

Выводы

Исходя из приведенных выше рассуждений, можно прийти к следующим выводам касательно решения проблемы верстки на разных устройствах:

  • Производителям мониторов необходимо всегда через драйвера сообщать ОС свой физический размер для приблизительного определения расстояния от экрана.
  • ОС должна не просто масштабировать элементы в процентах, но и уметь рассчитывать размер dp исходя из данных от монитора, чтобы элементы занимали необходимое место в угловом пространстве, видимом глазом
  • Для дополнительной калибровки можно использовать данные с камеры, чтобы оценить среднее расстояние от глаз до монитора.
  • Очевидно, что наиболее универсальной единицей явились бы сами am — arc minutes (градусы дуги). Помимо всего прочего 1am неплохо описывает толщину оптимальной для глаза линии в соответствующей классическому 1px линии на среднестатистическом мониторе.

На данный момент времени единственный способ решить эту проблему существующими методами — это узнавать параметры устройства через user-agent и подгонять под него переменную rem модульной сетки. Однако такое решение, вероятно, подходит только для больших компаний, которые могут позволить себе анализ и тестирование верстки на десятках видов устройств.PS В некоторых абзацах, описывающих точные данные, источники были переведены без изменений. 418 172.1k 418 © 2016 Vasili-photo.com

Для чего фотографу может потребоваться размер пикселя? Таких ситуаций хватает. Знание размера пикселя бывает полезно для определения безопасной выдержки при съёмке с рук, ведь чем мельче пиксель, тем заметнее на снимках проявляется дрожание камеры, и тем более короткая выдержка может потребоваться для устранения шевелёнки. Не имея представления о размере пикселя матрицы вашего фотоаппарата, нельзя всерьёз рассуждать о глубине резкости, поскольку именно от размера пикселя напрямую зависит допустимый диаметр кружка рассеяния. Значение дифракционно-ограниченной диафрагмы для конкретной фотокамеры также зависит от размера пикселя. Наконец, не исключено, что при сравнении нескольких камер вы захотите узнать, какая из них обладает большей плотностью пикселей, а, значит, обеспечивает лучшую детализацию и больше подходит для съёмки удалённых объектов.

В инструкциях к цифровым фотоаппаратам очень редко указывается размер пикселя матрицы, но, к счастью, этот параметр довольно легко рассчитать самостоятельно.

В большинстве инструкций можно найти сведения о физическом размере фотоматрицы, а также о её линейном разрешении, т.е. о количестве пикселей, умещающихся на матрице в одном ряду по горизонтали или по вертикали. Например, матрица цифрового фотоаппарата Canon EOS 70D имеет размеры 22,5 × 15 мм или 5472 × 3648 пикселей. Чтобы найти размер одного пикселя, достаточно взять цифры для любой из сторон, разделить миллиметры на пиксели и умножить полученное частное на 1000, чтобы перевести результат в микрометры (микроны). Получаем формулу:

, где

n – размер пикселя в микрометрах;

x – линейный размер матрицы в миллиметрах по одной из сторон;

a – количество пикселей по соответствующей стороне.

Для упомянутого выше 70D расчёт будет следующим:

22,5 ÷ 5472 · 1000 ≈ 4,1 мкм

Результат округлён до 0,1 мкм. Этого более чем достаточно для любых практических целей. Я использовал длинную сторону матрицы, но вы можете взять короткую и убедиться в том, что результат будет идентичным. У всех массовых современных фотоаппаратов пиксели условно квадратные, и потому расчёты можно проводить по любой из сторон матрицы. Впрочем, при использовании длинной стороны погрешность вычисления оказывается несколько меньше.

Возможно, вам не хочется лезть в инструкцию? Что ж, размер пикселя можно вычислить и не зная точных размеров матрицы.

Вам достаточно вспомнить разрешение вашей камеры в мегапикселях и её кроп-фактор. Уж эти-то параметры своего аппарата знает любой фотолюбитель. Формула будет выглядеть следующим образом:

, где

n – всё тот же размер пикселя в микрометрах;

Kf– кроп-фактор;

N – разрешение в мегапикселях.

Таким образом, для Canon EOS 70D, обладающего кроп-фактором 1,6 и разрешением 20 Мп получаем:

29,4 ÷ (1,6 · √20) ≈ 4,1 мкм

Как видим, обе формулы дают абсолютно единодушный ответ. Вы вправе использовать ту, которая вам больше нравится.

На случай, если кто-то из моих читателей не в ладах с квадратными корнями, я счёл своим долгом самостоятельно рассчитать размеры пикселей для некоторых наиболее употребимых цифровых форматов и свести эти данные в единую таблицу. Пользуйтесь на здоровье.

Размер пикселя в зависимости от разрешения камеры и её кроп-фактора, мкм.

Разрешение, Мп

Кроп-фактор

1* 1,5 1,6 2 2,7
10 6,2 5,8 3,4
12 8,5 5,7 5,3 4,2
14 5,2 2,9
16 7,3 4,9 3,7
18 6,9 4,3 2,6
20 6,6   4,1 2,4
21 6,6 4,2    
22 6,4
24 6 4 3,8
28 3,7
30 5,4  
36 4,9
42 4,5
45 4,4
50 4,1

Очевидно, что чем меньше матрица цифрового фотоаппарата и чем выше его разрешение, тем меньшим размером обладает единичный пиксель матрицы. Хорошо это или плохо?

Главным, да, пожалуй, и единственным положительным следствием уменьшения размеров отдельного пикселя является возрастание общей плотности пикселей. Матрица с большей плотностью пикселей при прочих равных условиях способна обеспечить лучшую детализацию снимка. Однако это преимущество, хоть и довольно весомое, тянет за собой целый ворох негативных последствий. Камеры с высоким разрешением очень требовательны к качеству объективов и техническому мастерству фотографа. Они не прощают небрежности в работе и с циничным удовольствием запечатлят на снимке не только полезные детали, но и всевозможные дефекты оптики, шевелёнку и промахи фокусировки. Чем мельче пиксель, тем раньше становится заметным негативное влияние дифракции на резкость при диафрагмировании объектива. Вместе с тем, мелкий пиксель диктует пропорционально малые размеры допустимого кружка рассеяния, уменьшая тем самым глубину резко изображаемого пространства.

Следует помнить, что при двукратном уменьшении линейных размеров пикселя его площадь уменьшается вчетверо, а, значит, вчетверо же уменьшается и количество фотонов, которые способен уловить фотодиод в единицу времени. На практике это означает падение ёмкости фотодиода, и пропорциональное снижение динамического диапазона матрицы. Можно даже сказать, что повышение количества пикселей почти всегда осуществляется ценой снижения их качества.

***

Не исключено, что у некоторых читателей возникнет вопрос: а действительно ли автор уверен в том, что размер пикселя может быть рассчитан с помощью приведённых им формул? Нет, автор в этом не уверен. Собственно фотодиоды матрицы занимают далеко не всю её площадь, и их фактический размер всегда меньше расчётного (см. «Как работает цифровой фотоаппарат»). Если быть точным, то формулы наши позволяют вычислить расстояние между геометрическими центрами двух соседних фотодиодов. Это расстояние смело может быть принято за теоретический размер пикселя и использовано для любых необходимых фотографу вычислений.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект, внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Желаю удачи!

Вернуться к разделу «Матчасть»

Перейти к полному списку статей

Пользуясь достижениями компьютерных технологий, будь то планшет, смартфон, ноутбук или стационарный компьютер, мы даже не задумываемся, насколько сложны эти устройства с технической точки зрения и из каких почти микроскопических частей состоят элементы, которые в плане функциональности играют важную роль. И это, кстати, касается не только «начинки» гаджета, но и многих элементов, которые мы видим постоянно. Что такое современный смартфон? Это в первую очередь картинка.  А из чего состоит это самое изображение на экране? Пора рассказать вам о таком интереснейшем понятии, как пиксель.

Само слово отнюдь не новое и знакомо большинству пользователей. Это определение часто применяется, чтобы обозначить качество картинки. Но что же представляет собой пиксель, как отдельная единица, каков его размер и какую роль он играет?

1. Пиксель – атом цифрового изображения

Если не вдаваться в скучную техническую терминологию, пиксель можно определить как базовую, самую маленькую единицу измерения изображения на мониторе. Это крошечная точка, которая имеет чаще всего округлую или прямоугольную форму, если посмотреть на нее под сильным увеличением. Цветность пикселей может быть разной. Существуют как черно-белые элементы, так и цветные. А их сочетание как раз и позволяет создавать красочные кадры на экранах современных устройств.

2. Пиксели и размер изображения

Сам по себе пиксель очень мал и, казалось бы, не имеет большого значения для всего изображения – всего лишь точка. Но наверняка вы встречали характеристики картинок и фотографий по количеству пикселей. Например, фото разрешением 300х100 пикселей. На деле это означает, что в конкретном изображении содержится 300 пикселей в горизонтальном расположении и 100 пикселей в вертикальном. Этот показатель в профессиональном языке имеет наименование плотности.

3. Как качество изображения зависит от количества пикселей?

Плотность пикселей имеет колоссальную важность при оценке качества и отдельного изображения, и монитора в целом. Эта характеристика считается ведущей, когда мы заговариваем о качестве цветопередачи и контурах изображения. Чем большее количество маленьких точек-пикселей монитор способен вместить, тем более четким, ярким и насыщенным будет картинка. Следовательно, такой монитор будет востребованным среди покупателей.

4. Какое информационное наполнение имеет пиксель?

Несмотря на свои более чем скромные размеры, пиксель обладает пятью информационными составляющими: три ответственны за цветовое решение пикселя. От них зависит, будет он иметь только два базовых цвета — черный и белый — или окажется более ярким. А вот две остальные составляющие определяют его расположение в пространстве монитора или экрана смартфона. Вся эта информация доступна головному считывающему элементу устройства, которое практически мгновенно способно распознать параметры каждого пикселя и найти для него правильное место, чтобы получилась нужная картинка.

5. Мегапиксель — это сколько?

Сама приставка «мега-» уже дает основания сделать предположение, что эта единица будет больше обычного пикселя. Если вы так думаете, то не ошибаетесь. Мегапиксель это прямоугольник, состоящий из одного миллиона крошечных пикселей, расположившихся в вертикальном и горизонтальном направлении. Этот параметр используется чаще всего для определения размерных параметров существующего изображения.

Текст: Flytothesky.ru

Читайте также:Почему буквы на клавиатуре расположены именно в таком порядке

Поделитесь постом с друзьями!

Непрерывное развитие технологии цифровых камер может смущать умы, поскольку постоянно вводятся новые термины. Эта глава призвана прояснить некоторые моменты касательно цифровых пикселей — в частности, для тех, кто ещё только задумывается или только что купил свою первую цифровую камеру. Здесь рассматриваются такие концепции, как размер сенсора, мегапиксели, дизеринг (цветозамес) и печатный размер.

Пиксель: фундаментальная единица всех цифровых изображений

Любое цифровое изображение состоит из фундаментальных единиц: пикселей. Термин «пиксель» (PIXEL) произошёл от сочетания двух английских слов: «изображение» (PICture) и «элемент» (ELement). В русском языке существовало аналогичное слияние («элиз»), но оно оказалось неудачным и не прижилось. Так же, как работы пуантилиста состоят из серии нарисованных пятен, так и миллионы пикселей могут быть объединены в подробное и кажущееся сплошным изображение.

Наведите курсор для выбора:   пуантилизм пиксели
 

Каждый пиксель содержит серию чисел, которые описывают его цвет или интенсивность. Точность, с которой пиксель может описать цвет, называется его разрядностью или глубиной цветности. Чем больше пикселей содержит ваше изображение, тем больше деталей оно способно передать. Заметьте, что я написал «способно», поскольку простое наличие большого числа пикселей ещё не означает полного их использования. Эта концепция важна и будет далее раскрыта более подробно.

Печатный размер: пиксели на дюйм (PPI) и точки на дюйм (DPI)

Поскольку пиксель является всего лишь логической единицей информации, он бесполезен для описания печатных оттисков — если не указать при этом их размер. Термины «пиксели на дюйм» (PPI) и «точки на дюйм» (DPI) появились, чтобы соотнести теоретическую единицу с визуальным разрешением материального мира. Эти термины зачастую ошибочно взаимозаменяют (в частности, для струйных принтеров), — дезориентируя пользователя относительно максимального печатного разрешения устройства.

«Пиксели на дюйм» является более чётким из двух терминов. Он означает количество пикселей на 1 дюйм изображения по горизонтали и вертикали. «Точки на дюйм» на первый взгляд выглядят обманчиво просто. Сложность в том, что устройству может понадобиться сделать несколько точек, чтобы создать один пиксель; тем самым указанное количество точек на дюйм не всегда означает аналогичное разрешение. Использование множества точек для создания одного пикселя означает процесс, называемый «дизерингом».

Устройство с ограниченным набором цветных чернил может обмануть глаз, собирая их в миниатюрные сочетания, создавая таким образом восприятие разных цветов, — если «суб-пиксель» достаточно мал. Вышеприведенный пример использует 128 цветов, тогда как вариант с цветозамесом создаёт практически идентично выглядящую картину, задействовав всего 24 цвета. Есть одна критическая разница: каждая цветная точка в изображении с замешиванием цвета обязана быть намного меньше отдельно взятого пикселя. Как следствие, изображения практически всегда требуют существенно больше DPI, чем PPI, чтобы достичь подобного уровня детализации. Кроме того, PPI намного более универсально, поскольку не требует знания устройства для понимания того, насколько детальным будет отпечаток.

Стандарт, принятый в фотолабораториях для отпечатков, равен 300 PPI, однако струйные принтеры для получения фотографического качества требуют в несколько раз больше DPI (в зависимости от числа чернил). Кроме того, это зависит от применения; журнальные и газетные отпечатки могут использовать намного меньшее качество. Чем больше вы пытаетесь увеличить отдельно взятое изображение, тем меньшим станет его PPI (для одинакового количества пикселей).

Мегапиксели и максимальный печатный размер

«Мегапиксель» означает просто миллион пикселей. Если вам нужна определённая детальность и соответствующее разрешение (PPI), она непосредственно влияет на предельный печатный размер для заданного числа мегапикселей. Следующая таблица приводит максимальные печатные размеры в разрешениях 200 и 300 PPI для некоторых наиболее распространённых в камерах чисел мегапикселей.

Мп Максимальный отпечаток 3:2
для 300 PPI, см: для 200 PPI, см:
2 14.7 x 9.7 22.1 x 14.7
3 18 x 11.9 26.9 x 18
4 20.8 x 13.7 31 x 20.8
5 23.1 x 15.5 34.8 x 23.1
6 25.4 x 17 38.1 x 25.4
8 29.2 x 19.6 44 x 29.2
12 35.8 x 23.9 53.9 x 35.8
16 41.4 x 27.7 62.2 x 41.4
22 48.5 x 32.5 72.9 x 48.5

Заметьте, что 2Мп камера неспособна даже обеспечить стандартный отпечаток 10×15 см в разрешении 300 PPI, а для 40×25 потребуется целых 16 Мп. Это может обескуражить, но не отчаивайтесь! Многим будет вполне достаточно разрешения 200 PPI, а при большой дистанции обзора его можно даже ещё уменьшить (см. «Увеличение цифровых фотографий»). Многие настенные постеры предполагают, что вы не станете их разглядывать с 15 см, а потому их разрешение зачастую меньше 200 PPI.

Камера и соотношение сторон изображения

Вышеприведенный расчёт печатного размера подразумевает, что соотношение сторон, то есть соотношение длинной и короткой сторон кадра, составляет стандартные 3:2, используемые в камерах 35 мм. На самом деле, большинство компактных камер, мониторов и телеэкранов имеют соотношение сторон 4:3, а у большинства цифровых зеркальных камер оно равно 3:2. Существует множество других вариантов: некоторое плёночное оборудование высшего класса использует даже квадратный кадр 1:1, а в фильмах на DVD применяется расширенный кадр 16:9.

Это означает, что если вы используете камеру с кадром 4:3, но хотите получить отпечаток 10×15 см (3:2), заметная часть ваших мегапикселей будет потрачена впустую (11%). Нужно принимать это во внимание, если соотношение сторон кадра вашей камеры отличается от требуемых размеров отпечатка.

Пиксели как таковые могут иметь своё собственное соотношение сторон, хотя это менее распространено. В некоторых видеостандартах и ранних камерах Nikon существовали асимметричные пиксели.

Размер цифрового сенсора: не все пиксели одинаковы

Даже если у двух камер одинаковое число пикселей, это необязательно означает, что размеры их пикселей также совпадают. Основной фактор отличия более дорогих цифровых зеркальных камер от своих компактных собратьев в том, что у первых цифровой сенсор занимает заметно большую площадь. Это означает, что если компактная и зеркальная камеры имеют одинаковое число пикселей, размер пикселя в зеркальной камере будет намного больше.

Сенсор компактной камерыСенсор зеркальной камеры

Какая разница, какого размера пиксели? Пиксель большего размера имеет большую площадь светосборника, что означает, что светосигнал на равных промежутках времени будет сильнее.

Обычно это приводит к гораздо лучшему соотношению сигнал-шум (SNR), что обеспечивает более гладкое и детальное изображение. Более того, динамический диапазон изображений (градация света и тени между абсолютно чёрным и засветкой, которую камера способна передать) тоже нарастает с увеличением размера пикселя. Это происходит потому, что каждый пиксель способен накопить больше фотонов, прежде чем наполнится и станет полностью белым.

Диаграмма внизу иллюстрирует относительный размер нескольких стандартных размеров сенсоров на современном рынке. В большинстве цифровых зеркальных камер используется кроп-фактор 1.5 или 1.6 (по сравнению с плёнкой 35 мм), хотя у некоторых моделей высшего класса цифровой сенсор имеет ту же площадь, что и кадр 35 мм. Размеры сенсоров, указанные в дюймах, не отражают настоящего диагонального размера, но вместо того описывают приблизительный диаметр «изображаемого круга» (используемого не полностью). Тем не менее, это число входит в характеристики большинства компактных камер.

Почему бы просто не использовать сенсор максимально возможного размера? Прежде всего потому, что большие сенсоры стоят существенно дороже, так что они не всегда выгодны.

Прочие факторы выходят за рамки этой статьи, однако можно принять во внимание следующие факторы: сенсоры большого размера требуют меньших диафрагм для получения аналогичной глубины резкости, однако они также и меньше подвержены дифракции на выбранной диафрагме.

Значит ли всё вышесказанное, что втискивать побольше пикселей в ту же площадь сенсора плохо? Обычно это увеличивает шумы, но разглядеть их можно только при 100% увеличении на мониторе вашего компьютера. В отпечатке шум модели с большим числом мегапикселей будет намного менее заметен, даже если на экране снимок кажется более шумным (см. «Шум в изображении: частота и амплитуда»). Это преимущество обычно превосходит любой прирост шумов при переходе к модели с большим числом мегапикселей (с некоторыми исключениями).

— Back to Photography Tutorials —

Пиксели на экранах устройств могут иметь разную форму — всё зависит от технологии производства экрана. Обычно один пиксель отображается с помощью трех цветных элементов (красного, зеленого и синего), которые могут светиться с разной интенсивностью. Форма и расположение этих элементов бывают разными Anews Знания12.11Новости Фото Что такое пиксель? Какой размер и цвет пикселя? Depositphotos

Пиксель — минимальный элемент любого растрового двумерного изображения. Это точка, которая имеет определенный цвет и местоположение.

Название «пиксель» (или пиксел) — сокращение от piсture element, элемент изображения. В русскоязычной литературе лет 20 назад можно было увидеть сокращение элиз, но оно не прижилось.

Также пикселем называют элементы матрицы дисплеев и цифровых датчиков изображения (хотя для датчиков лучше подходит сенсель — сенсорный элемент).

Что такое растровое изображение

Пиксели объединяют в растровые изображения. Это матрицы (двумерные таблицы), которые состоят из клеток-пикселей.

В каждом растровом изображении определенное количество точек по горизонтали и по вертикали. Все столбцы включают одинаковое количество пикселей. Как и все строки.

Важно, что пиксель неделимый. Если в атоме можно выделить ядро и электроны, то с пикселем такой номер не пройдет. Сделать из одного пикселя несколько (например, при увеличении картинки) может только специальный алгоритм. Но тогда, по сути, это будут уже элементы нового изображения — и также неделимые.

Разве бывают не растровые изображения? Да, векторные. Это скорее набор формул, по которым рисуются линии и заполняются пространства между ними. Векторное изображения можно уменьшить или увеличить без потери качества. Когда же вы растягиваете растровое изображение, появляется зернистость и дефекты — как если бы вы, к примеру, составили свой портрет из крупных кубиков вместо мелких деталей Lego.

Что такое разрешение изображения

Разрешение изображения определяют в пикселях. Вы могли встречать два варианта:

  • ширина и высота картинки, например, 1920х1080 пикселей;

  • плотность пикселей — например, 300 пикселей на дюйм (ppi — pixels per inch).

В первом случае всё понятно: цифры показывают, сколько пикселей в строке, а сколько — в столбце. Если же говорят о плотности, то представляют квадрат со стороной в один дюйм (2,54 см) и считают, сколько пикселей в нем поместится (на площади, а не по одной стороне).

Чем выше разрешение, тем лучше детализировано изображения, тем больше деталей можно рассмотреть. Тем мельче физический размер самого пикселя, а значит, можно передать тончайшие линии и мягкие переходы цвета.

Именно поэтому производители смартфонов, телевизоров и другой техники делают такой акцент на больших цифрах. Но дело в том, что человеческий глаз не способен воспринять больше 300 пикселей на дюйм. Изображение такого разрешения и выше он видит цельным и не разделяет на отдельные точки. Но если повышать разрешение, мы этого не увидим — только переплатим.

Какой формы пиксель

Из уроков математики мы знаем, что у точки нет ни формы, ни размера. Это лишь абстракция. Круглые точки потому, что такой след оставляет грифель карандаша или стержень ручки.

В цифровом растровом изображении пиксели считаются квадратными. Ведь это ячейки таблицы, которые расположены в вертикальных столбцах и горизонтальных строках строго друг за другом.

Пиксели на экранах устройств могут иметь разную форму — всё зависит от технологии производства экрана. Обычно один пиксель отображается с помощью трех цветных элементов (красного, зеленого и синего), которые могут светиться с разной интенсивностью. Форма и расположение этих элементов бывают разными. Также порой для корректной цветопередачи используется два элемента красного цвета, один зеленый и один синий; комбинации могут быть и другими.

ОСТАВЬТЕ ОТВЕТ

Please enter your name here
Please enter your comment!